HEF4066B

Quad single-pole single-throw analog switch Rev. 06 — 25 March 2010

Product data sheet

1. **General description**

The HEF4066B provides four single-pole, single-throw analog switch functions. Each switch has two input/output terminals (nY and nZ) and an active HIGH enable input (nE). When nE is LOW, the analog switch is turned off.

The HEF4066B is pin compatible with the HEF4016B but exhibits a much lower ON resistance. In addition the ON resistance is relatively constant over the full input signal range.

The HEF4066B is suitable for use over both the industrial (-40 °C to +85 °C) and automotive (-40 °C to +125 °C) temperature ranges.

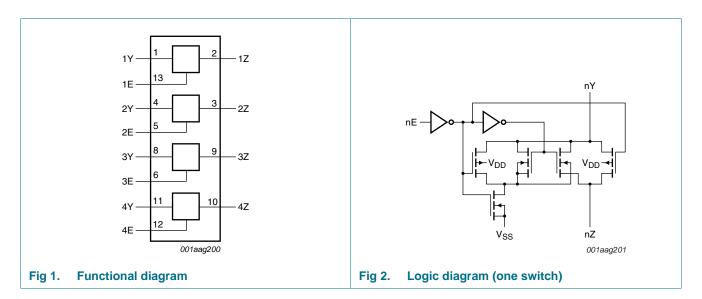
Features and benefits 2.

- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Inputs and outputs are protected against electrostatic effects
- Operates across the automotive temperature range -40 °C to +125 °C
- Complies with JEDEC standard JESD 13-B

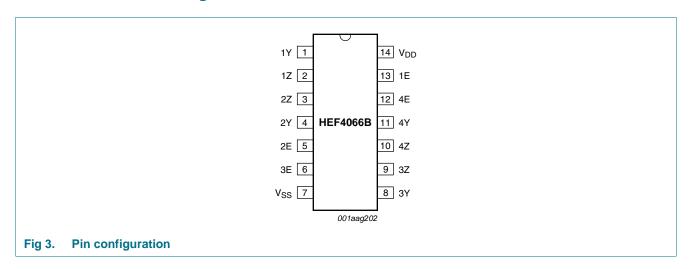
Applications

- Industrial and automotive
- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

Ordering information


Table 1. Ordering information

Type number	Package								
	Temperature range	Name	Description	Version					
HEF4066BP	–40 °C to +125 °C	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1					
HEF4066BT	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1					


Quad single-pole single-throw analog switch

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1Y, 2Y, 3Y, 4Y	1, 4, 8, 11	independent input or output
1Z, 2Z, 3Z, 4Z	2, 3, 9, 10	independent input or output
1E, 2E, 3E, 4E	13, 5, 6, 12	enable input (active HIGH)
V _{SS}	7	ground (0 V)
V_{DD}	14	supply voltage

HEF4066B_6

All information provided in this document is subject to legal disclaimers.

Quad single-pole single-throw analog switch

7. Functional description

Table 3. Function table[1]

Input nE	Switch
Н	ON
L	OFF

^[1] H = HIGH voltage level; L = LOW voltage level.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to V_{SS} = 0 V (ground).

	, ,			,
Parameter	Conditions	Min	Max	Unit
supply voltage		-0.5	+18	V
input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{DD} + 0.5 \text{ V}$	-	±10	mA
input voltage		-0.5	$V_{DD} + 0.5$	V
input/output current		<u>[1]</u> _	±10	mA
storage temperature		-65	+150	°C
ambient temperature		-40	+85	°C
total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$			
	DIP14	[2] -	750	mW
	SO14	[3]	500	mW
power dissipation	per switch	-	100	mW
	supply voltage input clamping current input voltage input/output current storage temperature ambient temperature total power dissipation	supply voltage input clamping current $V_{I} < -0.5 \text{ V or } V_{I} > V_{DD} + 0.5 \text{ V}$ input voltage input/output current storage temperature ambient temperature total power dissipation	supply voltage -0.5 input clamping current $V_{I} < -0.5 \text{ V or } V_{I} > V_{DD} + 0.5 \text{ V} -$ input voltage -0.5 input/output current $11 -$ storage temperature -65 ambient temperature -40 total power dissipation $T_{amb} = -40 \text{ °C to } +85 \text{ °C}$ $DIP14 \qquad \qquad \boxed{2} -$ $SO14 \qquad \qquad \boxed{3} -$	ParameterConditionsMinMaxsupply voltage -0.5 $+18$ input clamping current $V_1 < -0.5 \text{ V or } V_1 > V_{DD} + 0.5 \text{ V}$ $ \pm 10$ input voltage -0.5 $V_{DD} + 0.5$ input/output current -0.5 -0.5 -0.5 storage temperature -65 $+150$ ambient temperature -40 $+85$ total power dissipation -0.5

^[1] To avoid drawing V_{DD} current out of terminal nZ, when switch current flows into terminals nY, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no V_{DD} current will flow out of terminals nY, in this case there is no limit for the voltage drop across the switch, but the voltages at nY and nZ may not exceed V_{DD} or V_{SS}.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DD}	supply voltage		3	-	15	V
V_{I}	input voltage		0	-	V_{DD}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
$\Delta t/\Delta V$	input transition rise and fall	$V_{DD} = 5 V$	-	-	3.75	μs/V
	rate	V _{DD} = 10 V	-	-	0.5	μs/V
		V _{DD} = 15 V	-	-	0.08	μs/V

^[2] For DIP14 packages: above T_{amb} = 70 °C, P_{tot} derates linearly with 12 mW/K.

^[3] For SO14 packages: above $T_{amb} = 70 \, ^{\circ}\text{C}$, P_{tot} derates linearly with 8 mW/K.

Quad single-pole single-throw analog switch

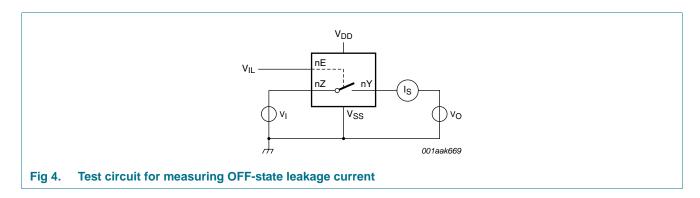

10. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0$ V; $V_I = V_{SS}$ or V_{DD} unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	T _{amb} =	-40 °C	T _{amb} =	= 25 °C	T _{amb} =	85 °C	T _{amb} =	125 °C	Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level	$ I_{O} < 1 \mu A$	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
	input voltage		10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
V_{IL}	LOW-level	$ I_{O} < 1 \mu A$	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
input voltaç	input voltage		10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
I _I	input leakage current		15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{S(OFF)}	OFF-state leakage current	per channel; see <u>Figure 4</u>	15 V	-	-	-	200	-	-	-	-	nA
I _{DD}	supply current	combinations 1	5 V	-	1.0	-	1.0	-	7.5	-	7.5	μΑ
			10 V	-	2.0	-	2.0	-	15.0	-	15.0	μΑ
			15 V	-	4.0	-	4.0	-	30.0	-	30.0	μΑ
Cı	input capacitance	nE input	-	-	-	-	7.5	-	-	-	-	pF

10.1 Test circuit

Quad single-pole single-throw analog switch

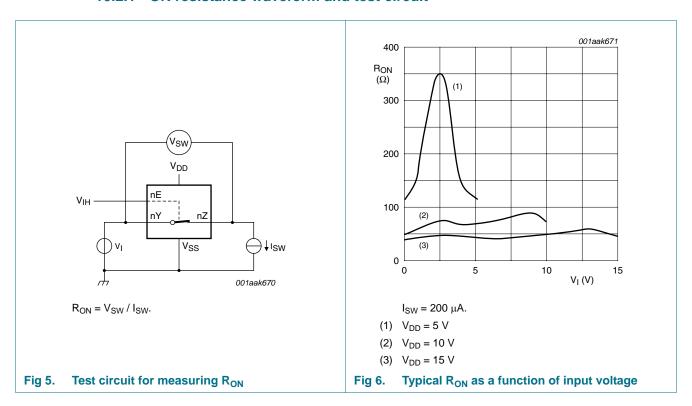

10.2 ON resistance

Table 7. ON resistance

 $T_{amb} = 25$ °C; $I_{SW} = 200 \mu A$; $V_{SS} = 0 V$.

Symbol	Parameter	Conditions	V _{DD}	Тур	Max	Unit
R _{ON(peak)}	ON resistance (peak)	$V_I = 0 \text{ V to } V_{DD}$; see Figure 5 and	5 V	350	2500	Ω
		Figure 6	10 V	80	245	Ω
			15 V	60	175	Ω
R _{ON(rail)}	ON resistance (rail)	V _I = 0 V; see <u>Figure 5</u> and <u>Figure 6</u>	5 V	115	340	Ω
			10 V	50	160	Ω
			15 V	40	115	Ω
		V _I = V _{DD} ; see <u>Figure 5</u> and <u>Figure 6</u>	5 V	120	365	Ω
			10 V	65	200	Ω
			15 V	50	155	Ω
ΔR_{ON}	ON resistance mismatch	$V_I = 0 V \text{ to } V_{DD}; \text{ see } \frac{\text{Figure 5}}{}$	5 V	25	-	Ω
	between channels		10 V	10	-	Ω
			15 V	5	-	Ω

10.2.1 ON resistance waveform and test circuit

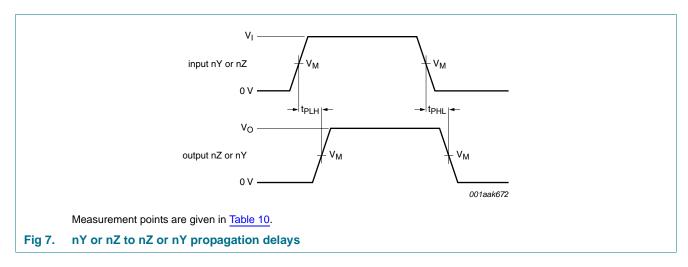
Quad single-pole single-throw analog switch

11. Dynamic characteristics

Table 8. Dynamic characteristics

 $T_{amb} = 25$ °C; $V_{SS} = 0$ V; for test circuit see <u>Figure 9</u>.

Symbol	Parameter	Conditions	V_{DD}	Тур	Max	Unit
t _{PHL}	HIGH to LOW propagation delay	nY, nZ to nZ, nY; see Figure 7	5 V	10	20	ns
			10 V	5	10	ns
			15 V	5	10	ns
		nY, nZ to nZ, nY; see Figure 7	5 V	10	20	ns
			10 V	5	10	ns
			15 V	5	10	ns
1112	HIGH to OFF-state propagation delay	nE to nY, nZ; see Figure 8	5 V	80	160	ns
			10 V	65	130	ns
			15 V	60	120	ns
t _{PZH}	OFF-state to HIGH	nE to nY, nZ; see Figure 8	5 V	40	80	ns
	propagation delay		10 V	20	40	ns
			15 V	15	30	ns
t_{PLZ}	LOW to OFF-state	nE to nY, nZ; see Figure 8	5 V	80	160	ns
	propagation delay		10 V	70	140	ns
			15 V	70	140	ns
t _{PZL}	OFF-state to LOW	nE to nY, nZ; see Figure 8	5 V	45	90	ns
	propagation delay		10 V	20	40	ns
			15 V	15	30	ns


Table 9. Dynamic power dissipation P_D

 P_D can be calculated from the formulas shown; $V_{SS} = 0 \text{ V}$; $t_r = t_f \le 20 \text{ ns}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$.

Symbol	Parameter	V_{DD}	Typical formula for P _D (μW)	where:
P_D	dynamic power	5 V	$P_D = 2500 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$	f_i = input frequency in MHz;
	dissipation	10 V	$P_D = 11500 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2$	f _o = output frequency in MHz;
		15 V	$P_D = 29000 \times f_i + \Sigma (f_0 \times C_L) \times V_{DD}^2$	C_L = output load capacitance in pF;
				V_{DD} = supply voltage in V;
				$\Sigma(C_L \times f_o)$ = sum of the outputs.

Quad single-pole single-throw analog switch

11.1 Waveforms and test circuit

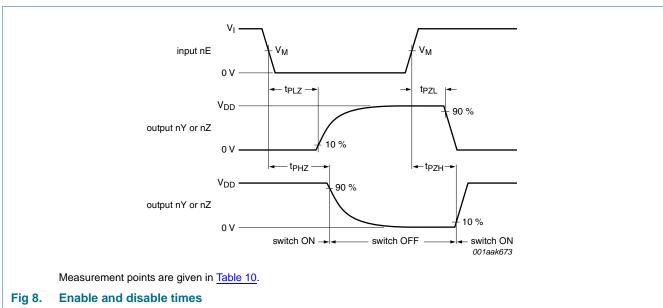
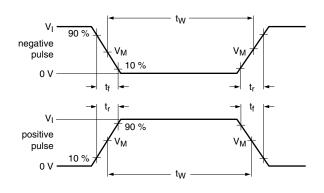
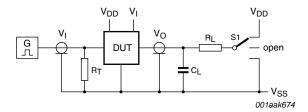




Table 10. Measurement points

Supply voltage	Input	Output
V_{DD}	V _M	V _M
5 V to 15 V	0.5V _{DD}	0.5V _{DD}

Quad single-pole single-throw analog switch

Test data is given in Table 11.

Definitions:

DUT = Device Under Test.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 C_L = Load capacitance including test jig and probe.

 R_L = Load resistance.

Fig 9. Test circuit for measuring switching times

Table 11. Test data

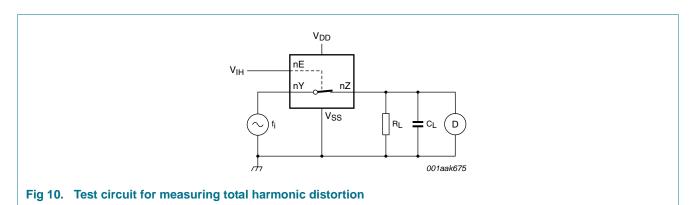
Supply voltage	Input		Load		S1 position		
V_{DD}	VI	t _r , t _f	C _L	R _L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
5 V to 15 V	0 V or V _{DD}	≤ 20 ns	50 pF	10 kΩ	V _{SS}	V _{SS}	V_{DD}

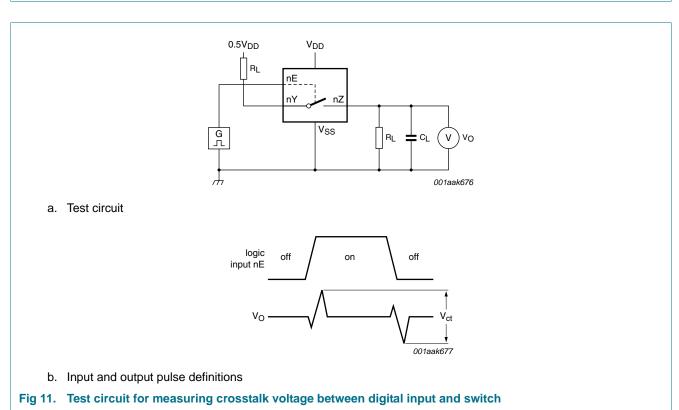
11.2 Additional dynamic parameters

Table 12. Additional dynamic characteristics

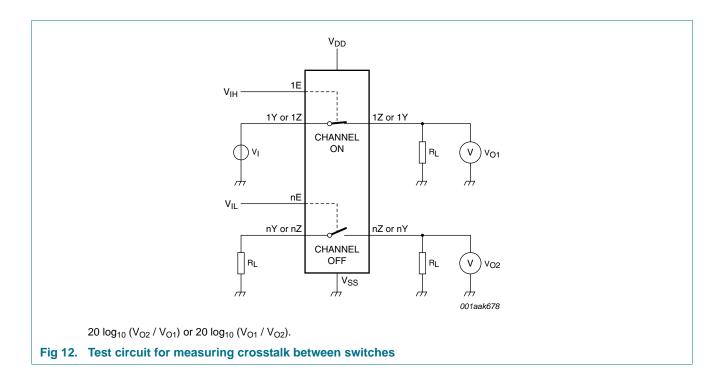
 $V_{SS} = 0$ V; $T_{amb} = 25$ °C.

Symbol	Parameter	Conditions	V_{DD}	Тур	Max	Unit
THD	total harmonic distortion	see Figure 10; $R_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$; channel ON; $V_I = 0.5V_{DD}$ (p-p); $f_i = 1 \text{ kHz}$	5 V	<u>[1]</u> 0.25	-	%
			10 V	<u>[1]</u> 0.04	-	%
		1 - 1 1112	15 V	<u>[1]</u> 0.04	-	%
V _{ct}	crosstalk voltage	nE input to switch; see Figure 11; $R_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$; $nE = V_{DD}$ (square-wave)	10 V	50	-	mV


Quad single-pole single-throw analog switch


Table 12. Additional dynamic characteristics ...continued $V_{SS} = 0$ V; $T_{amb} = 25$ °C.

Symbol	Parameter	Conditions	V_{DD}	Тур	Max	Unit
Xtalk	crosstalk	between switches; see Figure 12; f_i = 1 MHz; R_L = 1 k Ω ; V_I = 0.5 V_{DD} (p-p)	10 V	<u>[1]</u> –50	-	dB
α_{iso}	isolation (OFF-state)	see Figure 13; $f_i = 1$ MHz; $R_L = 1$ k Ω ; $C_L = 5$ pF; $V_I = 0.5 V_{DD}$ (p-p)	10 V	<u>[1]</u> –50	-	dB
f _(-3dB)	-3 dB frequency response	see Figure 14; $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$; $V_I = 0.5V_{DD}$ (p-p)	10 V	<u>[1]</u> 90	-	MHz


[1] f_i is biased at 0.5 V_{DD} .

11.2.1 Test circuits

Quad single-pole single-throw analog switch

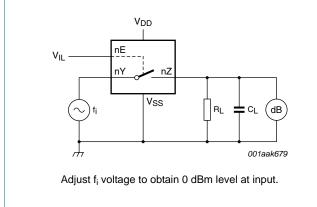
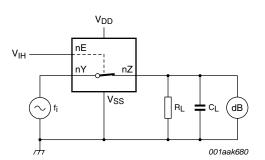
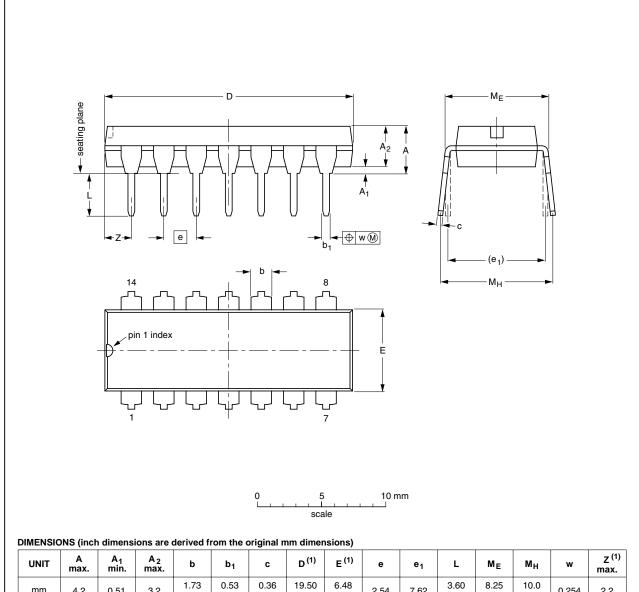



Fig 13. Test circuit for measuring isolation (OFF-state)

Adjust f_i voltage to obtain 0 dBm level at output. Increase f_i frequency until dB meter reads -3 dB.

Fig 14. Test circuit for measuring frequency response


HEF4066B NXP Semiconductors

Quad single-pole single-throw analog switch

12. Package outline

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

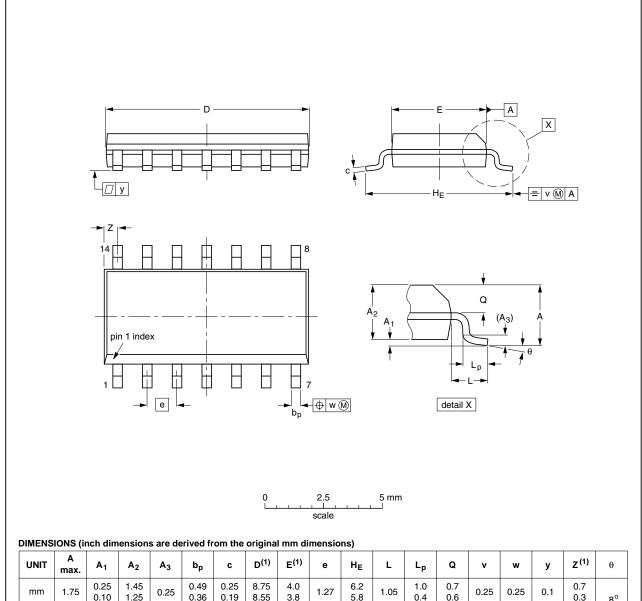
	•					•									
UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E (1)	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.02	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	ON IEC JEDEC		JEITA		PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001	SC-501-14			99-12-27 03-02-13	

Fig 15. Package outline SOT27-1 (DIP14)

HEF4066B_6


All information provided in this document is subject to legal disclaimers.

HEF4066B NXP Semiconductors

Quad single-pole single-throw analog switch

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

UNIT	A max.	A ₁	A ₂	A ₃	b _p	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.35 0.34	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.024	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT108-1	076E06	MS-012				99-12-27 03-02-19	

Fig 16. Package outline SOT108-1 (SO14)

HEF4066B_6

All information provided in this document is subject to legal disclaimers.

Quad single-pole single-throw analog switch

13. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4066B_6	20100325	Product data sheet	-	HEF4066B_5
HEF4066B_5	20100225	Product data sheet	-	HEF4066B_4
Modifications:	Table 6 "Sta	atic characteristics": Condition	ns V _{IL} and V _{IH} correcte	ed.
	 Abbreviatio 	ns section removed.		
HEF4066B_4	Abbreviatio20091013	ns section removed. Product data sheet	-	HEF4066B_CNV_3
HEF4066B_4 HEF4066B_CNV_3			-	HEF4066B_CNV_3 HEF4066B_CNV_2

Quad single-pole single-throw analog switch

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be

suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

HEF4066B 6

All information provided in this document is subject to legal disclaimers.

Quad single-pole single-throw analog switch

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Quad single-pole single-throw analog switch

16. Contents

1	General description 1
2	Features and benefits
3	Applications
4	Ordering information 1
5	Functional diagram 2
6	Pinning information
6.1	Pinning
6.2	Pin description 2
7	Functional description 3
8	Limiting values
9	Recommended operating conditions 3
10	Static characteristics 4
10.1	Test circuit 4
10.2	ON resistance 5
10.2.1	ON resistance waveform and test circuit 5
11	Dynamic characteristics 6
11.1	Waveforms and test circuit 7
11.2	Additional dynamic parameters 8
11.2.1	Test circuits9
12	Package outline
13	Revision history
14	Legal information 14
14.1	Data sheet status
14.2	Definitions
14.3	Disclaimers
14.4	Trademarks14
15	Contact information
16	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.