HEF4050B

Hex non-inverting buffers Rev. 05 — 11 November 2008

Product data sheet

1. General description

The HEF4050B provides six non-inverting buffers with high current output capability suitable for driving TTL or high capacitive loads. Since input voltages in excess of the buffers' supply voltage are permitted, the buffers may also be used to convert logic levels of up to 15 V to standard TTL levels. Their guaranteed fan-out into common bipolar logic elements is shown in Table 3.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to $V_{\text{DD}},\,V_{\text{SS}},$ or another input. It is also suitable for use over the industrial (-40 °C to +85 °C) temperature range.

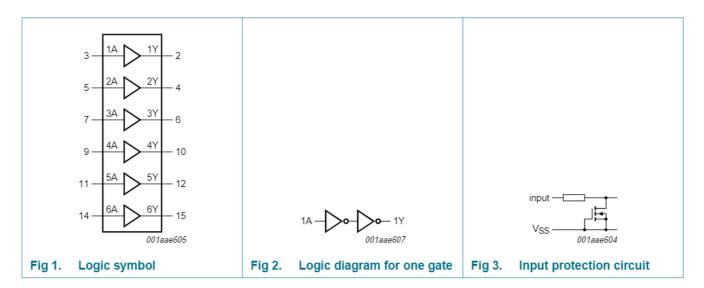
2. Features

- Accepts input voltages in excess of the supply voltage
- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Operates across the full industrial temperature range -40 °C to +85 °C
- Complies with JEDEC standard JESD 13-B
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V

3. Applications

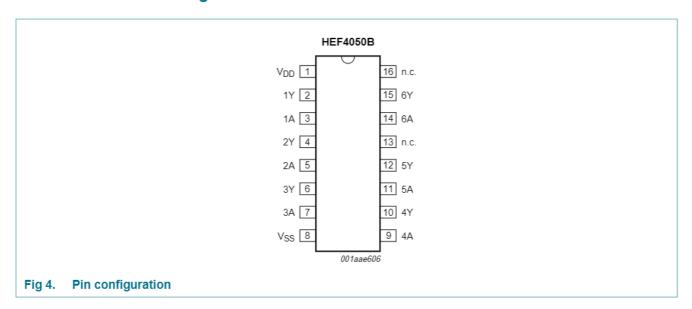
- LOCMOS (Local Oxidation CMOS) to DTL/TTL converter
- HIGH sink current for driving two TTL loads
- HIGH-to-LOW level logic conversion

Ordering information


Table 1. **Ordering information**

All types operate from -40 °C to +85 °C.

Type number	Package							
	Name	Description	Version					
HEF4050BP	DIP16	plastic dual in-line package; 16-leads (300 mil)	SOT38-4					
HEF4050BT	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1					



5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
V_{DD}	1	supply voltage
1Y to 6Y	2, 4, 6, 10, 12, 15	output

Table 2. Pin description ... continued

Symbol	Pin	Description
1A to 6A	3, 5, 7, 9, 11, 14,	input
V_{SS}	8	ground supply voltage
n.c.	13, 16	not connected

7. Functional description

Table 3. Guaranteed fan-out

Driven element	Guaranteed fan-out
Standard TTL	2
74 LS	9
74 L	16

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		-0.5	+18	V
V_{I}	input voltage		-0.5	$V_{DD} + 0.5$	V
$I_{I/O}$	input/output current		-	10	mA
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
P _{tot}	total power dissipation	T_{amb} –40 °C to +85 °C			
		DIP16 package	[1] _	750	mW
		SO16 package	[2] -	500	mW
Р	power dissipation	per output	-	100	mW

^[1] For DIP16 package: P_{tot} derates linearly with 12 mW/K above 70 °C.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		3	15	V
V_{I}	input voltage		0	V_{DD}	V
T _{amb}	ambient temperature	in free air	-40	+85	°C
$\Delta t/\Delta V$	input transition rise and fall rate	V_{DD} = 5 V	-	3.75	ns/V
		V _{DD} = 10 V	-	0.5	ns/V
		V _{DD} = 15 V	-	0.08	ns/V

HEF4050B_5 ® NXP B.V. 2008. All rights reserved.

^[2] For SO16 package: Ptot derates linearly with 8 mW/K above 70 °C.

10. Static characteristics

Table 6. Static characteristics

 V_{SS} = 0 V; V_{I} = V_{SS} or V_{DD} unless otherwise specified.

Symbol	Parameter	Conditions	itions V _{DD}	T _{amb} =	-40 °C	T _{amb} =	25 °C	T _{amb} =	85 °C	Unit
				Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level input voltage	I _O < 1 ∝A	5 V	3.5	-	3.5	-	3.5	-	V
			10 V	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	V
V_{IL}	LOW-level input voltage	I _O < 1 ∝A	5 V	-	1.5	-	1.5	-	1.5	V
			10 V	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	V
V_{OH}	HIGH-level output voltage	I _O < 1 ∝A	5 V	4.95	-	4.95	-	4.95	-	V
			10 V	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	V
V_{OL}	LOW-level output voltage	I _O < 1 ∝A	5 V	-	0.05	-	0.05	-	0.05	V
			10 V	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	V
I_{OH}	HIGH-level output current	V_O = 2.5 V	5 V	-1.7	-	-1.4	-	-1.1	-	mA
		V_O = 4.6 V	5 V	-0.52	-	-0.44	-	-0.36	-	mA
		$V_O = 9.5 V$	10 V	-1.3	-	-1.1	-	-0.9	-	mΑ
		V_O = 13.5 V	15 V	-3.6	-	-3.0	-	-2.4	-	mΑ
I_{OL}	LOW-level output current	$V_O = 0.4 V$	4.75 V	3.5	-	2.9	-	2.3	-	mΑ
		$V_O = 0.5 V$	10 V	12.0	-	10.0	-	8.0	-	mA
		$V_O = 1.5 V$	15 V	24.0	-	20.0	-	16.0	-	mA
I	input leakage current		15 V	-	±0.3	-	±0.3	-	±1.0	σA
I_{DD}	supply current	I _O = 0 A	5 V	-	4.0	-	4.0	-	30	σA
			10 V	-	8.0	-	8.0	-	60	σA
			15 V	-	16.0	-	16.0	-	120	αA
C_{I}	input capacitance			-	-	-	7.5	-	-	pF

11. Dynamic characteristics

Table 7. Dynamic characteristics

 V_{SS} = 0 V; T_{amb} = 25 °C; for test circuit see Figure 6; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula	Min	Тур	Max	Unit
11112	HIGH to LOW	nA to nY;	5 V	11 26 ns + (0.18 ns/pF)C _L	-	35	70	ns
	propagation delay	see Figure 5	10 V	16 ns + (0.08 ns/pF)C _L	-	20	35	ns
			15 V	12 ns + $(0.05 \text{ ns/pF})C_L$	-	15	30	ns
t_{PLH}	LOW to HIGH	ropagation delay see Figure 5 10 V	5 V	11 28 ns + $(0.55 \text{ ns/pF})C_L$	-	55	110	ns
	propagation delay		10 V	14 ns + (0.23 ns/pF)C _L	-	25	55	ns
			15 V	12 ns + (0.16 ns/pF)C _L	-	20	40	ns

Table 7. Dynamic characteristics ... continued

 V_{SS} = 0 V; T_{amb} = 25 °C; for test circuit see Figure 6; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula	Min	Тур	Max	Unit
t _{THL} HIGH to LOW		GH to LOW see Figure 5 V		11 7 ns + $(0.35 \text{ ns/pF})C_L$	-	25	50	ns
output transition time		10 V	$3 \text{ ns} + (0.14 \text{ ns/pF})C_L$	-	10	20	ns	
		1	15 V	$2 \text{ ns} + (0.09 \text{ ns/pF})C_L$	-	7	14	ns
t _{TLH} LOW to HIGH			5 V	10 ns + (1.00 ns/pF)C _L	-	60	120	ns
output transition time		10 V	9 ns + $(0.42 \text{ ns/pF})C_L$	-	30	60	ns	
		15 V	15 V	6 ns + $(0.28 \text{ ns/pF})C_L$	-	20	40	ns

^[1] The typical values of the propagation delay and transition times are calculated from the extrapolation formulas shown (C_L in pF).

Table 8. Dynamic power dissipation P_D

 P_D can be calculated from the formulas shown. V_{SS} = 0 V; t_r = $t_f \le$ 20 ns; T_{amb} = 25 °C.

Symbol	Parameter	V_{DD}	Typical formula for P _D (∞W)	where:
P_D	dynamic power	5 V	$P_D = 3800 \cdot f_i + \Sigma (f_0 \cdot C_L) \cdot V_{DD}{}^2$	f_i = input frequency in MHz,
dissipation	10 V	$P_D = 11600 \cdot f_i + \Sigma (f_0 \cdot C_L) \cdot V_{DD}^2$	f ₀ = output frequency in MHz,	
		15 V	$P_D = 65900 \cdot f_i + \Sigma (f_0 \cdot C_L) \cdot V_{DD}^2$	C_L = output load capacitance in pF, V_{DD} = supply voltage in V, $\Sigma(C_L \cdot f_0)$ = sum of the outputs.

12. Waveforms

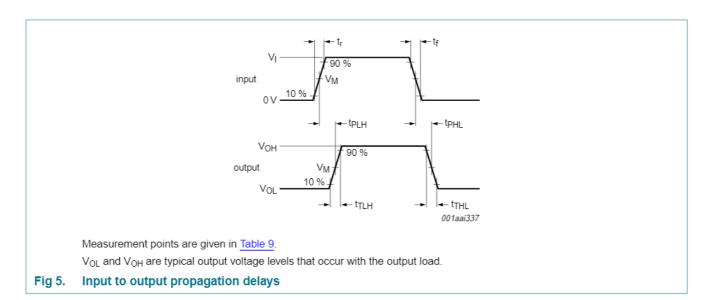
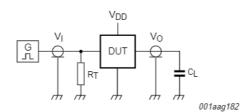



Table 9. Measurement points

Input	Output	
V_{M}	V _I	V _M
0.5V _{DD}	0 V to V _{DD}	0.5V _{DD}

HEF4050B_5 ® NXP B.V. 2008. All rights reserved.

Test data is given in Table 10.

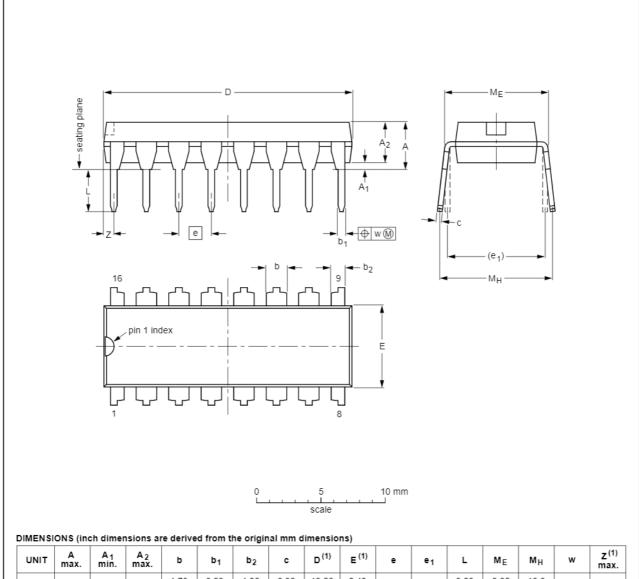
Definitions for test circuit:

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

Fig 6. Test circuit for switching times

Table 10. Test data


Supply voltage	Input	Load		
	VI	V _M	t _r , t _f	CL
5 V to 15 V	V_{DD}	0.5V _I	≤ 20 ns	50 pF

13. Package outline

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

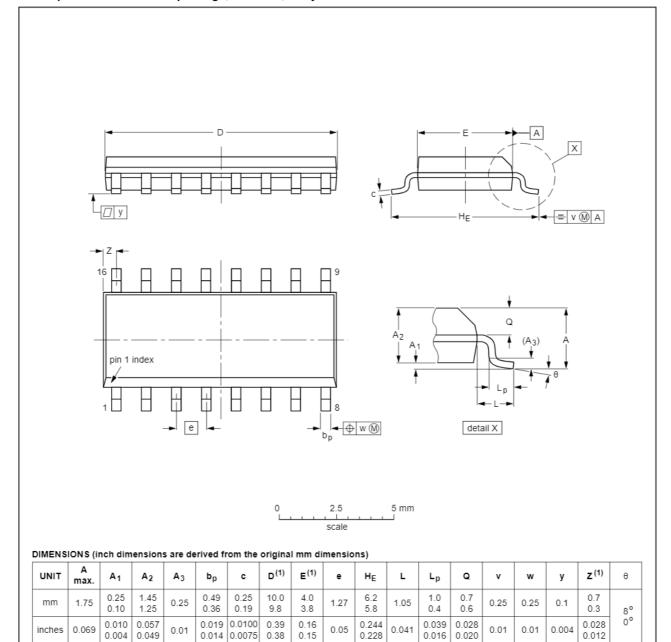
7 of 11

	max.	1111111.	max.			_							_			max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.02	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.03

Note

Product data sheet

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ICCUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT38-4						95-01-14 03-02-13

Package outline SOT38-4 (DIP16) Fig 7.

HEF4050B_5 © NXP B.V. 2008. All rights reserved. Rev. 05 — 11 November 2008

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

Note

Product data sheet

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	100115 5455		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT109-1	076E07	MS-012				99-12-27 03-02-19

Rev. 05 — 11 November 2008

Fig 8. Package outline SOT109-1 (SO16)

HEF4050B_5

8 of 11

9 of 11

Hex non-inverting buffers

14. Abbreviations

Table 11. Abbreviations

Acronym	Description
DUT	Device Under Test
DTL	Diode Transistor Logic
ESD	ElectroStatic Discharge
HBM	Human Body Model
LOCMOS	Local Oxidation CMOS
MM	Machine Model
TTL	Transistor Transistor Logic

15. Revision history

Table 12. Revision history

Product data sheet

	•			
Document ID Release date		Data sheet status	Change notice	Supersedes
HEF4050B_5 20081111		Product data sheet	-	HEF4050B_4
Modifications:	Section 1 "	F _{amb} changed to 85 °C and 1 General description" temper "Static characteristics" I _{DD} , I	ature range statement r	
HEF4050B_4	20080702	Product data sheet	-	HEF4050B_CNV_3
HEF4050B_CNV_3	19950101	Product specification	-	HEF4050B_CNV_2
HEF4050B_CNV_2	19950101	Product specification	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

16.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

1	General description
2	Features
3	Applications
4	Ordering information
5	Functional diagram 2
6	Pinning information 2
6.1	Pinning
6.2	Pin description 2
7	Functional description 3
8	Limiting values 3
9	Recommended operating conditions 3
10	Static characteristics 4
11	Dynamic characteristics 4
12	Waveforms
13	Package outline 7
14	Abbreviations 9
15	Revision history9
16	Legal information
16.1	Data sheet status
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks10
17	Contact information 10
18	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

